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Novel 1 Neural Network Adaptive Control
Architecture With Guaranteed

Transient Performance
Chengyu Cao, Member, IEEE, and Naira Hovakimyan, Senior Member, IEEE

Abstract—In this paper, we present a novel neural network (NN)
adaptive control architecture with guaranteed transient perfor-
mance. With this new architecture, both input and output signals
of an uncertain nonlinear system follow a desired linear system
during the transient phase, in addition to stable tracking. This
new architecture uses a low-pass filter in the feedback loop, which
consequently enables to enforce the desired transient performance
by increasing the adaptation gain. For the guaranteed transient
performance of both input and output signals of the uncertain
nonlinear system, the 1 gain of a cascaded system, comprised
of the low-pass filter and the closed-loop desired reference model,
is required to be less than the inverse of the Lipschitz constant
of the unknown nonlinearities in the system. The tools from this
paper can be used to develop a theoretically justified verification
and validation framework for NN adaptive controllers. Simulation
results illustrate the theoretical findings.

Index Terms—Adaptive control, approximation region, neural
network (NN), radial basis function (RBF), transient.

I. INTRODUCTION

NEURAL NETWORKS (NNs) were conventionally in-
troduced to control systems in the presence of matched

nonlinear uncertainties that could not be globally linearly
parameterized in unknown parameters. Starting from the sem-
inal paper of Narendra and Parthasarathy [1], where rigorous
stability proofs were first introduced, the field has evolved
significantly over the past one and half decades. Topics of
interest included computation of the gradients needed for back-
propagation-type tuning [2], [3], use of radial basis functions
(RBFs) for feedback [4], dead-zone methods for NN parame-
ters tuning [5], [6], projection-based adaptation [7]–[9], use of
e-modification schemes in adaptive laws [10], use of NNs for
discrete-time systems [11], use of dynamic NNs for feedback
[12], use of NNs for general nonlinear systems in state feedback
and output feedback [13], [14], and use of NNs in decentralized
control [15], to name only a few. Parameter convergence in
RBF networks has been addressed in [16]. NNs have also
proved to be a useful tool in a wide range of applications from
robotic manipulators [17] to aircraft control [18], and beyond.
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However,eventhoughthestabilityproofsareavailable, thelack
of systematic methods for selection of basis functions, distribu-
tionof theircenters,andthechoiceofadaptivegainsrenderdesign
and application of NN adaptive controllers overly challenging.
This isdue to the fact that the systemuncertaintiesduring the tran-
sient can lead to unpredictable/undesirable situations, involving
control signals of high-frequency or large amplitudes, large tran-
sient errors, or slow convergence rate of tracking errors, to cite a
few. Extensive tuning of adaptive gains and Monte Carlo runs are
the primary method today enabling the transition of NN adaptive
control solutions to real-world applications.

It is worthwhile to mention that the transient performance
characterization is challenging with any model reference adap-
tive control (MRAC) scheme, the NN-based adaptive controllers
being one of those. Various approaches have been reported in
literature over the past couple of decades that have addressed
this issue in conventional MRAC scheme using in most of the
cases high-gain feedback component in the feedback loop in ad-
dition to the adaptive signals [19]–[31]. However, all the bounds
in these papers are computed for tracking errors only, and not
for control signals. Although the latter can be deduced from the
former, it is straightforward to verify that the ability to adjust
the former may not extend to the latter in case of nonlinear con-
trol laws. Moreover, since the purpose of adaptive control is to
ensure stable performance in the presence of modeling uncer-
tainties, one needs to ensure that the changes in reference input
and unknown parameters due to possible faults or unexpected
uncertainties do not lead to unacceptable transient deviations
or oscillatory control signals, implying that a retuning of adap-
tive parameters is required. Finally, it is highly desirable to en-
sure that whatever modifications or solutions are suggested for
performance improvement of adaptive controllers, they are not
achieved via high-gain feedback.

In this paper, we define a new type of model following NN
adaptive controller, for which the transient performance can be
characterized both for the system input and output signals. The
methodology in this paper is an extension of the adaptive
controller, reported in [32]–[34], for general MRAC scheme.
This new adaptive control architecture has a low-pass system in
the feedback loop that enables to enforce the desired transient
performance by increasing the adaptation gain. For the proof of
ultimate boundedness, the gain of a cascaded system, com-
prised of this filter and the closed-loop desired transfer function,
is required to be less than the Lipschitz constant of the unknown
nonlinearities. The ideal (nonadaptive) version of this NN
adaptive controller is used along with the main system dynamics
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to define a closed-loop reference system, which gives an oppor-
tunity to estimate performance bounds in terms of norms
for both system’s input and output signals as compared to the
same signals of this reference system. These bounds immedi-
ately imply that the transient performance of the control signal
in conventional MRAC scheme cannot be characterized. Design
guidelines for selection of the low-pass filter ensure that the
closed-loop reference system approximates the desired linear
system response, despite the fact that it depends upon the un-
known nonlinearity. Thus, the desired tracking performance is
achieved by systematic selection of the low-pass filter, which in
its turn enables fast adaptation, as opposed to high-gain designs
leading to increased control efforts. The last but not the least,
the NN adaptive control architecture gives the ability also to
reduce the ultimate bound for the tracking error by increasing
the adaptation gain.

The paper is organized as follows. Section II states some pre-
liminary definitions, and Section III gives the problem formula-
tion. In Section IV, the new NN adaptive controller is pre-
sented. Stability and performance bounds for the NN adap-
tive controller are presented in Section V. Design techniques
for neural adaptive controller are discussed in Section VI. In
Section VII, simulation results are presented, while Section VIII
concludes this paper. Throughout this paper, will denote
the Laplace transformation of signal .

II. PRELIMINARIES

In this section, we recall some basic definitions and facts from
linear systems theory, [24], [35], [36]. For any positive-definite
matrix , we let and be its minimum and
maximum eigenvalues.

Definition 1: For a signal , its truncated
norm and norm are defined as

where is the th component of .
Definition 2: The gain of a stable proper single-

input–single-output (SISO) system is defined to be
, where is the impulse re-

sponse of , computed via the inverse Laplace transform
, in which the integra-

tion is done along the vertical line in the complex
plane.

Proposition: A continuous-time linear time invariant (LTI)
system (proper) with impulse response is stable if and only
if . A proof can be found in [24, Th. 3.2.2, p.
81].

Definition 3: For a stable proper -input– -output system
, its gain is defined as

(1)

where is the th row th column element of .
The next lemma extends the results of [35, Example 5.2, p.

199] to general multiple-input–multiple-output (MIMO) sys-
tems.

Lemma 1: For a stable proper MIMO system with input
and output , we have

Proof: Let be the th element of , be the
th element of , be the th row th element of ,

and be the impulse response of . Then, for any
, we have

(2)

From (2), it follows that:

and hence, . It follows
from (1) that:

for any . The proof is complete.
Corollary 1: For a stable proper MIMO system , if the

input is bounded, then the output is also
bounded as .

Lemma 2: For a cascaded system ,
where is a stable proper system with inputs and out-
puts and is a stable proper system with inputs and
outputs, we have

Proof: Let be the output of
in response to input . It follows

from Lemma 1 that for any

(3)

Let , , be the th row of the system . It
follows from (1) that there exists such that

(4)
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Let be the th element of the impulse response of the
system . For any , let

(5)
It follows from Definition 1 that , and hence,

. For satisfying
(5), we have

Therefore, it follows from (3) that for any ,
. As

, it follows from (4) that:

and this completes the proof.
Consider a linear time invariant system

(6)

where , , , and is Hurwitz,
and assume that the transfer function is strictly
proper and stable. Notice that it can be expressed as

(7)

where is a th-order stable polynomial,
and is a vector with its th element being a polynomial
function

(8)

Lemma 3: If is controllable, the
matrix with its th row th column entry is full rank.

Proof: Controllability of for the LTI system in
(6) implies that given an initial condition , arbitrary

, and arbitrary , there exists , such
that . If is not full rank, then there exists a nonzero
vector , such that . Then, it follows that for

one has , . This contradicts
, in which is assumed to be an arbitrary

point. Therefore, must be full rank, and the proof is com-
plete.

Lemma 4: If is controllable and is
strictly proper and stable, there exists such that the
transfer function is minimum phase with rela-
tive degree one, i.e., all its zeros are located in the left half-plane,
and its denominator is one order larger than its numerator.

Proof: It follows from (7) that

(9)

where is matrix with its th row th column entry
introduced in (8). We choose such that
is a stable -order polynomial. Since is control-
lable, it follows from Lemma 3 that is full rank. Let

. Then, it follows from (9) that
has relative degree 1 with all its zeros in

the left half-plane.

III. PROBLEM FORMULATION

Consider the following SISO system dynamics:

(10)

where is the system state vector (measurable),
is the control signal, are known constant vectors,
is a known matrix with controllable, is
the regulated output, is time-varying disturbance, and

is an unknown Lipschitz continuous map, i.e., there
exists such that

(11)

We notice that the Lipschitz continuity is expressed using the
norm without loss of generality. We further assume that the

upper bound for is known

(12)

The unknown bounded disturbance is continuously differ-
entiable with uniformly bounded derivative

(13)

The control objective is to design a neural adaptive controller
to ensure that tracks a given bounded continuous reference
signal , with known upper bound of , both in transient
and steady state, while all other error signals remain bounded.
More rigorously, the control objective can be stated as

(14)

where is a strictly proper stable LTI system that specifies
the desired transient and steady-state performance.

Following [4], consider an RBF NN approximation of
over a compact set

(15)

where is a vector of Gaussian RBFs with its th element

the parameters and are the prefixed centers and widths,
is a vector of unknown weights, is a uniform bound for the
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approximation error, and the set will be specified shortly. We
further assume that a compact convex set is known a priori
such that

Remark 1: To streamline the subsequent derivation, we have
set the initial condition . Extension to nonzero is
straightforward, and is discussed in Remark 9.

IV. NEURAL ADAPTIVE CONTROLLER

For the system in (10), consider the following control struc-
ture:

(16)

where is the adaptive controller to be determined later,
while is a nominal design gain needed to ensure that

is Hurwitz or, equivalently, that

is stable. Notice that if is Hurwitz, then one can set .
The control signal in (16) leads to the following partially closed-
loop dynamics:

(17)

For the linearly parameterized system in (17), we consider the
following state predictor:

(18)

along with the adaptive law for and

(19)

where is the tracking error, is
adaptation gain, denotes the projection operator [37],
and is the solution of the algebraic Lyapunov
equation , . Letting

the state predictor in (18) can be viewed as a low-pass system
with being the control signal and being a time-varying
disturbance, which is not prevented from having high-frequency
oscillations. We consider the following control design for (18):

(20)

where is a stable and strictly proper system with low-pass
gain , and

Consider the closed-loop state predictor in (18) with the con-
trol signal defined in (20). It can be viewed as an LTI system
with two inputs and

(21)

(22)

(23)

We note that is related to , , and via nonlinear
relationships.

Remark 2: Since both and are strictly proper
stable systems, one can check straightforwardly that and

are strictly proper stable systems, even though
is proper.

Now, we give the performance requirement that ensures
boundedness of the entire system and desired transient perfor-
mance, as discussed in Section V.

-gain requirement: Design and to satisfy

(24)

where is introduced in (11).
Since with RBF approximation the performance results are

always local, one needs to characterize the set , on which the
RBFs are distributed. Let

(25)

where is an arbitrary positive constant, while

(26)

(27)

(28)

where . The complete
neural adaptive controller consists of (16) and (18)–(20), subject
to (24) with defined in (25). The closed-loop system with it
is illustrated in Fig. 1.

Remark 3: Since the neural controller will lead only to
local results and guarantee for any , as proved
in the subsequent sections, the relationships in (12) and (11) can
be assumed only for the compact set .

V. ANALYSIS OF ADAPTIVE CONTROLLER

A. Reference System

In this section, we characterize the reference system that the
neural controller in (16) and (18)–(20) tracks both in tran-

sient and steady state, and this tracking is valid for system’s
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Fig. 1. Closed-loop system with L neural adaptive controller.

Fig. 2. Closed-loop reference system.

both input and output signals. Towards that end, consider the
following ideal version of the adaptive controller in (16) and
(20):

(29)

where is the filtered output of by
and is introduced to denote the Laplace transfor-

mation of the closed-loop system state with the controller (29).
If , the control law in (29) leads to the following
closed-loop dynamics:

(30)

where and are the Laplace transformations of
and , and . The

closed-loop system with the controller (29) is given in Fig. 2.
The following lemma states that the closed-loop system with
the controller (29) is stable, and its state remains inside

for all .
Lemma 5: The control signal given by (29), subject to the

condition in (24), ensures that the state of the closed-loop system
in (30) remains inside for all

(31)

where is defined in (26).

Proof: We will prove the lemma by contradiction. Assume
that (31) is not true. Since and
is continuous, there exists such that and

for any , which consequently
leads to the following inequalities for :

(32)

It follows from (25) that:

and hence, (15) implies that

For the closed-loop system state in (30), application of Lemma
1 leads to the following result:

(33)

Notice that can be upper bounded as

for all and, hence

This consequently leads to the next upper bound for the expres-
sion in (33)

Using the condition in (24) and the upper bound in (12), one
gets

(34)

Since , then it is straightforward to see that

which contradicts in (32). Hence, the rela-
tionship in (31) holds, and this completes the proof.

Thus, the control signal ensures that for any the state
, on which the RBF approximation has been de-

fined, and therefore, .

B. Uniform Boundedness and Guaranteed Transient
Performance of NN Adaptive Controller

We note that is the state–space realization of
. Since is controllable, it can be proved straightfor-
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wardly that is also controllable. It follows from
Lemma 4 that there exists such that

(35)

where the order of is one more than the order of ,
and both and are stable polynomials.

Theorem 1: Given the system in (10), the reference system
in (29) and (30), and the NN adaptive controller defined via
(16) and (18)–(20), subject to (24), we have

(36)

(37)

(38)

where is defined in (28)

(39)

and and are the gains of and , re-
spectively.

Proof: The proof will be done by contradiction. Assume
that (36) is not true. Then, since ,
and both and are continuous, there exists such that

and for
any . This leads to the following inequalities:

(40)

which, consequently, implies that

Since , and the regressor in the state predictor in
(18) operates over , one can use the relationships in (15) and
(17) to derive the following error dynamics:

(41)

where and . Consider
the following candidate Lyapunov function:

The following is straightforward to derive:

for any . Therefore, for any if

The projection algorithm ensures that ,
and therefore

where is defined in (27). Thus, , ,
outside the compact set

(42)
This consequently implies that for any

and, hence

(43)

Moreover, using the upper bounds in (40) and (31) along with
, implies that

From (21) and (30), one can write

(44)

where , , and are the Laplace transformations
of signals , , and

, respectively. The relationship in
(41) leads to

(45)

Recalling the definition of from (22), one can further write

Recalling the RBF approximation in (15), one gets the following
upper bound:

for , and hence, the relationship in (11) implies that

(46)

Similarly, we have
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Lemma 1 leads to the following upper bound:

which along with the condition in (24) reduces to

Since

it follows from (43) that:

which contradicts the condition in (40). Hence, the relationship
in (36) holds. The upper bound in (37) follows from (36) and
Lemma 2 directly.

It follows from (16), (20), and (29) that

where is the Laplace transformation of
and . Using the same steps as in

(46), we obtain

From (45), it follows that can be presented as

where is introduced in (35). Using the expression in (35), one
can further write

where and are stable polynomials and the order of
is one less than the order of . Since is stable

and strictly proper, the complete system is
proper and stable, which implies that its gain exists and is
finite. Hence, we have

which leads to the following upper bound:

Remark 4: From the relationships in (31) and (36), it is
straightforward to verify that

and hence, belongs to for any .
Corollary 2: Given the system in (10) and the NN adap-

tive controller defined via (16) and (18)– (20), we have

Corollary 2 states that , , and follow ,
, and not only asymptotically but also during the

transient, provided that the adaptive gain is selected sufficiently
large and the NN approximation is accurate enough. Thus, the
control objective is reduced to designing and to ensure
that the reference system with unknown parameters has the de-
sired response . Before then, the following remarks are in
order.

Remark 5: Notice that if we set , then the
neural controller degenerates into an MRAC type. In that case,

cannot be finite, since is
strictly proper. Therefore, from (39) it follows that ,
and hence, for the control signal in conventional MRAC-type
NN adaptive controller, one cannot reduce the bound in (38) by
increasing the adaptive gain.

Remark 6: Recall that in conventional MRAC scheme the
ultimate bound is given by defined in (27). Notice that
depends upon , , and . While and are in-
terconnected via the choice of RBFs, is a design param-
eter of the adaptive process that can be used to reduce the ulti-
mate bound. However, increasing in the conventional MRAC
scheme leads the control signal into high-frequency oscillations.
With the adaptive control architecture, the ultimate bound of
the tracking error is given by in (36). From the definition of
it in (28), it follows that . Nevertheless, the ability of
the control architecture to tolerate large adaptive gain im-
plies that can be reduced leading to overall a smaller value
for . This is enabled via the low-pass system in the feed-
back path that filters out the high-frequencies in excited by
large . The adaptive control architecture gives a scheme
for fast adaptation without generating high-frequency oscilla-
tions in the control signal.

VI. DESIGN OF THE NEURAL CONTROLLER

We proved that the error between the state and the control
signal of the closed-loop system with neural controller in
(10), (16), and (18)–(20) (Fig. 1) and the state and the con-
trol signal of the closed-loop reference system in (29) and (30)
(Fig. 2) can be rendered arbitrarily small by increasing the adap-
tive gain. Therefore, the control objective is reduced to deter-
mining and to ensure that the reference system in (29)
and (30) (Fig. 2) has the desired response from to

. Notice that the reference system in Fig. 2 is nonlinear
and depends upon the unknown nonlinearity .
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Consider the following signals:

(47)

where and

(48)

where is the Laplace transformation of .
We note that depends on the system uncertainty ,
while does not. Since is bounded and is stable,

is also bounded and we can straightforwardly derive its
upperbound: . It is straightfor-
ward to verify that for any .

Lemma 6: For the system in (10) and the reference system in
(29) and (30), subject to (24), the following upper bounds hold:

(49)

(50)

(51)

where
.

Proof: It follows from (30) and (47) that:

and, hence

(52)

Since

and

we have

From Lemma 5, we have , which leads to

(53)

The relationship in (50) follows directly.
Using the relationships in (29) and (48), we get

(54)

where

Using the Lipschitz condition for from (11), it follows that:

which, when substituted back into (54), leads to the upper bound
in (51).

We notice that the condition in (24) is crucial for character-
ization of the transient performance, as stated by the bounds
in Lemma 6. Thus, the problem is reduced to finding a strictly
proper stable and a gain to satisfy the performance
requirement in (24). It follows from (49) that for achieving

it is desirable to ensure that is
sufficiently small. Minimization of can be achieved
from the following two different perspectives: 1) fix
and minimize and 2) fix and minimize the

-gain of the cascaded systems via the
choice of .

1) High-gain design. Set , where is in-
troduced in (14). Then, minimization of can
be achieved via high-gain feedback by choosing suf-
ficiently large. Minimized via large leads
to large poles of . Since is a strictly proper
system containing the dominant poles of the closed-loop
system in and , we have

. Hence, the system re-
sponse will be . We note that with large
feedback , the performance of neural controller de-
generates into a high-gain type. The shortcoming of this
design is that the high-gain feedback leads to a reduced
phase margin and, consequently, affects robustness.

2) Design without linear feedback. As in MRAC, assume that
we can select to ensure

Let

(55)

Lemma 7: For any single-input– -output strictly proper
stable system , the following is true:

Proof: It follows from (55) that:

Since is strictly proper and stable, is stable and
has relative degree , and hence, is finite. Since

, it follows from (2) that:

Lemma 7 states that if one chooses ,
then by increasing the bandwidth of the low-pass system ,
it is possible to render arbitrarily small, and, hence

We note that is exactly the reference model of
the MRAC design. Therefore, this approach is equivalent to
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Fig. 3. Cascaded systems.

mimicking MRAC, and, hence, high-gain feedback can be
completely avoided.

However, increasing the bandwidth of is not the only
choice for minimizing . Since is a low-pass
filter, its complementary is a high-pass filter with
its cutoff frequency approximating the bandwidth of .
Since both and are strictly proper systems,

is equivalent to cascading a low-pass
system with a high-pass system . If one chooses
the cutoff frequency of larger than the bandwidth of

, it ensures that is a “no-pass” system, and hence, its
gain can be rendered arbitrarily small. This can be achieved

via higher order filter design methods. The illustration is given
in Fig. 3.

Remark 7: From Corollary 2 and Lemma 6 it follows that the
adaptive controller can generate a system response to track

(47) and (48) both in transient and steady state if we set the
adaptive gain large and minimize . Notice that
in (48) depends upon the unknown nonlinearity , while

in (47) does not. This implies that for different nonlinear-
ities , the neural controller will generate different con-
trol signals [dependent on ] to ensure uniform system
response [independent of ]. This is natural, since dif-
ferent nonlinearities imply different systems, and to have sim-
ilar response for different systems the control signals have to be
different. Here is the obvious advantage of the neural con-
troller in a sense that it controls a partially known system as
a nonadaptive feedback controller would have done if the un-
known nonlinearities were known. Finally, we note that if the
term is dominated by , then the controller
in (48) turns into a high-gain type, and, consequently, the
adaptive controller degenerates into a high-gain design.

Remark 8: We notice that the following limiting relation-
ships:

imply that the set of the RBF distribution converges to the
set

while contains all possible trajectories for a
bounded input . In the presence of the limiting relationships

, , and , Theorem 1 and Lemma

Fig. 4 k �G(s)k L (solid) with respect to ! and constant 1 (dashed).
k �G(s)k L (solid) defined in (58).

6 imply that both system response and control signal
follow the corresponding desired signals of and ,
respectively. Without , , and ,
the corresponding bounds are explicitly given for both
system response and control signals in Theorem 1 and Lemma
6.

Remark 9: To accommodate nonzero initial conditions, one
needs to define the compact set for RBF approximation
larger to ensure that all the trajectories of , , and

remain inside for all . It is straightforward
to verify that the bounds given in Theorem 1 and Lemma 6 hold
for nonzero initial values as well, as long as , , and

do not leave . Towards this end, notice that

leading to

where is the bound for . Since the
closed-loop desired system has linear response, the bound for

can be computed for arbitrary initial condition, and the
definition of the set can be modified accordingly.

Remark 10: We notice that the performance bounds in
(36)–(38) were computed assuming zero trajectory initializa-
tion error in (41), i.e., , which is in the spirit of the
methods for transient performance improvement in [38]. In
[39], we have proved that nonzero trajectory initialization error
leads only to an exponentially decaying term in both system
state and control signal, without affecting the performance
throughout.

VII. SIMULATIONS

Consider the following nonlinear system:

(56)
where

and is the measurable state vector,
is the control signal, is an unknown nonlinear function of
system states, and is an additional time-varying bounded
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Fig. 5. Performance of L neural controller for r = 1 and �(t) = 0. (a) y(t)
(solid) and r(t) (dashed); (b) time history of u(t).

disturbance. The control objective is to design an NN adaptive
controller to ensure that tracks any continuous , sub-
ject to , both in transient and steady state. Let

(57)

In the following simulations, we consider the uncertainty

for which the value of is a sufficiently conservative esti-
mate for the bound in (11), and is a similarly conservative
for the upper bound in (12) on the compact set of RBF distribu-
tion.

We choose for (16), and implement the fol-
lowing state predictor as:

where and are the same as in (56), is
updated following (19) with

Since we have no knowledge of the uncertainty except for
some conservative bounds, we set . The
adaptive increment is implemented following (20) with

Fig. 6. Performance of L neural controller for r = 1 and �(t) = 1 �
cos(0:3t). (a) y(t) (solid) and r(t) (dashed); (b) time history of u(t).

and . The state predictor is designed with the use of nine
identical Gaussian RBFs. They are distributed over the grids

and with the step size equal to two
in both dimensions and width . We set the norm of upper
bound for the projection operator to , i.e., the weight
parameter of every RBF is restricted to the set [ 15, 15]. In
Fig. 4(a), we plot

(58)

with respect to and compare it to 1. We notice that when
, we have and the -gain requirement in (24)

is satisfied. By setting , we have
, which leads to smaller bounds for

and .
For a constant reference input and , the system

response and the control signal are plotted in Fig. 5(a) and (b).
We now consider the performance of the adaptive controller
in the presence of additional disturbance signal. The plots are
given in Figs. 6(a) and 7(b) for disturbances
and , respectively. We note that the control
signal compensates for the unknown disturbance leading to the
desired system response.

The performance of the NN adaptive controller for the
reference input in the presence of

is plotted in Fig. 8(a) and (b). Fig. 9(a) and (b)
plots the simulation results for a different disturbance signal

. If these frequencies in the control signal
are undesirable, then one can reduce the bandwidth of ,
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Fig. 7. Performance of L neural controller for r = 1 and �(t) = 1 �
cos(10t). (a) y(t) (solid) and r(t) (dashed); (b) time history of u(t).

Fig. 8 Performance of L neural controller for r = cos(0:2t) and �(t) =
1� cos(0:3t). (a) y(t) (solid) and r(t) (dashed); (b) time history of u(t).

and the corresponding bounds for the degradation in the perfor-
mance can be computed from the analysis of the adaptive
controller.

Fig. 9. Performance of L neural controller for r = cos(0:2t) and �(t) =
1� cos(10t). (a) y(t) (solid) and r(t) (dashed); (b) time history of u(t).

VIII. CONCLUSION

A novel NN adaptive control architecture is presented that has
guaranteed transient response in addition to stable tracking. The
new low-pass control architecture adapts fast without generating
high-frequency oscillations in the control signal, which is oth-
erwise not possible to achieve using conventional MRAC-based
NN adaptive controllers. The compact set on which NN ap-
proximation is performed is given explicitly. Extension of the
methodology to MIMO systems with unknown control effec-
tiveness is reported in [40].
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