1. Consider the following spring-mass-damper system. We measure the displacement y of the mass from a static equilibrium position (so that the gravitational force is balanced by the equilibrium spring deflection). An external force f is applied and treated as input. Suppose that $m=1 \text{ kg}$, $b=2 \text{ Nm/s}$, and $k=2 \text{ N/m}$.

![Spring-mass-damper system diagram]

a. What is the governing ordinary differential equation?

b. Obtain state-space representation of the system dynamics with input f and output y.

c. Build a SIMULINK model to simulate the system. Print your model. Print the response of $y(t)$ corresponding to an input $f(t) = 1 + \sin(\pi t)$.

Given inputs $f_1 = \sin(\pi t)$ and $f_2 = \frac{1}{t} + 2$, simulate and obtain the responses y_1, y_2.

Let $f_3 = \alpha f_1 + \beta f_2$. Simulate and obtain y_3 corresponding to f_3. Check if $y_3 = \alpha y_1 + \beta y_2$.

Plot y_3 and $\alpha y_1 + \beta y_2$ on the same plot for different combinations:

1) $\alpha = 3$, $\beta = 0$; 2) $\alpha = 0$, $\beta = 5$; 3) $\alpha = 3$, $\beta = 6$; 4) $\alpha = 2.5$, $\beta = -6$.

Also plot $y_3 - (\alpha y_1 + \beta y_2)$ for each scenario. [Make sure you do not need to modify your simulink model for different values of α and β.]
2. Assume the following differential equation:

\[4\ddot{x} + 5x\dot{x} - 10x = u(t) \]

a. Obtain state-space representation of the system dynamics with input \(u \) and output \(x \).

b. Build a SIMULINK model to simulate the system. Print your model. Print the response of \(y(t) \) corresponding to input \(u(t) = 6 \cos\left(\frac{\pi}{6} t + 5\right) \sin(2t) + e^{-3t} \).

\[\text{c. Is the dynamical system linear? Why? Verify your answer using simulation.} \]

Given inputs \(f_1 = \sin(2t) \) and \(f_2 = \frac{1}{t} + 2 \). Simulate and obtain the responses \(y_1, y_2 \).

Let \(f_3 = \alpha f_1 + \beta f_2 \). Simulate and obtain response \(y_3 \) corresponding to \(f_3 \). Check if \(y_3 = \alpha y_1 + \beta y_2 \).

Plot \(y_3 \) and \(\alpha y_1 + \beta y_2 \) on the same plot for different combinations:

1) \(\alpha = 3, \ \beta = 0 \); 2) \(\alpha = 0, \ \beta = 5 \); 3) \(\alpha = 3, \ \beta = 6 \); 4) \(\alpha = 2.5, \ \beta = -6 \);

Also plot \(y_3 - (\alpha y_1 + \beta y_2) \) for each scenario.

[Make sure you do not need to modify your SIMULINK model for different values of \(\alpha \) and \(\beta \)]