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Abstract— This paper presents a theoretical framework for
augmenting an existing autopilot by an adaptive element so
that it tracks a given smooth reference command with desired
specifications. The main contribution of the approach is that it
allows for augmenting the autopilot without any modifications
to it. The augmentative adaptive element is based on the L1

adaptive output feedback control architecture developed in [1].
The complete path following architecture of this paper enables
a UAV with an off-the-shelf autopilot to follow a predetermined
path that it was not otherwise designed to follow. The paper
concludes with flight test results performed in Camp Roberts,
CA, in February of 2007.

I. INTRODUCTION

This paper develops a theoretical framework for augment-

ing the existing autopilot for a single unmanned aerial vehicle

(UAV), which is tasked to follow a certain trajectory with

prespecified tight bounds. The problem in this paper was

motivated by the framework of [2] for coordinated path

following of multiple vehicles under spatial and temporal

constraints. Examples of various missions include coordi-

nated ground target suppression and sequential auto-landing

for multiple UAVs per se. Both mission scenarios require a

group of UAVs to execute time-critical maneuvers in close

proximity of each other. While Ref. [2] presents a guidance

framework for time-critical coordination of multiple UAVs,

this paper presents an adaptive control architecture to ensure

that an existing autopilot for a single UAV can execute the

specified path with sufficient accuracy. For that purpose,

we use the framework of the recent L1 adaptive control

architecture [3], [4] and its extension to output feedback [1],

[5] that enables augmentation of the autopilot without any

modifications to it. The complete path following architecture

of this paper enables a UAV with an off-the-shelf autopilot

to follow a predetermined path that it was not otherwise

designed to follow. Additionally, the L1 adaptive augmenta-

tion leads to analytically computable performance bounds for

both input and output signals simultaneously [6], [7]. In [8],

we report the extension of this framework to a fleet of UAVs

that enables cooperative control for time-critical missions,

and we correspondingly extend the stability proof from [2]

to account for the adaptive augmentation.

The paper is organized as follows. Section II states the

problem formulation. Section III describes the kinematics
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of the path following algorithm. Section IV summarizes the

overall control architecture, while Section V verifies the the-

oretical findings with results from real flight tests performed

in Camp Roberts, CA, in February of 2007. Section VI

concludes the paper. Throughout the paper || · (s)||L1
will

denote the L1 gain of the system, while || · ||L∞ will denote

the L∞ norm of the signal.

II. PROBLEM FORMULATION

In this paper we consider the problem of stabilization of

cascaded systems given by:

Ge : ẋ(t) = f(x(t)) + g(x(t))y(t) (1)

Gp : y(s) = Gp(s)(u(s) + z(s)), (2)

where the subsystem Ge represents the path-following kine-

matics of the UAV, while the subsystem Gp models the

closed-loop system of the UAV with the autopilot. Figure 1

presents a sketch of this cascaded system. We note that x(t)
and y(t) are the measured outputs of this cascaded system,

u(t) is the only control signal, and y(s), u(s) denote the

Laplace transforms of y(t) and u(t) respectively. The maps

f, g are known, Gp(s) is unknown strictly proper transfer

function, and z(s) is the Laplace transform of z(t), which

models the unknown bounded time-varying disturbances.

The control objective is to stabilize x(t) by the design of

u(t) without any modifications to the autopilot. Below we

characterize both subsystems separately.
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Fig. 1. Cascaded systems

III. EXISTENCE OF A STABILIZING FUNCTION FOR THE

KINEMATICS OF PATH FOLLOWING

Let F be a Serret-Frenet frame, Fig. 2, attached to a

generic point on the path, and let W be the wind frame
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Fig. 2. Cascaded systems

attached to the UAV (a frame that has its x-axis aligned with

the UAV’s velocity vector). Let pc(τ) be a desired trajectory

to be followed by a single UAV, where τ denotes the path

length. Let

qI = [xI yI zI ]
⊤ (3)

be the position of the aircraft center of mass resolved in I .

Let qF = [xF yF zF ]⊤ be the difference between qI and pc
resolved in F . Furthermore, let ψe, θe, ψe denote the Euler

angles that locally parameterize the rotation matrix from F
to W . Let

x(t) = [xF (t) yF (t) zF (t) θe(t)− δθ(t) ψe(t)− δψ(t)]⊤ ,

where

δθ(t) = sin−1

(

zF (t)

|zF (t)| + d1

)

,

δψ(t) = sin−1

(

yF (t)

|yF (t)| + d2

)

, (4)

with d1 > 0 , d2 > 0 being some constants, and v(t) be the

UAV speed subject to the following lower bound:

v(t) ≥ vmin, ∀ t ≥ 0 . (5)

It follows from [2] that the open-loop system Ge, describing

the kinematic error equations of a UAV, is given by:

Ge :

ẋF (t) = −τ̇(t)(1 − κ(τ(t))yF (t)) + v cos(θe(t)) cos(ψe(t))
ẏF (t) = −τ̇(t)(κ(τ(t))xF (t) − ζ(τ(t))zF (t))+

v cos(θe(t)) sin(ψe(t))
żF (t) = −ζ(τ(t))τ̇(t)yF (t) − v sin(θe(t))

θ̇e(t) = uθ(t)

ψ̇e(t) = uψ(t)
τ̇(t) = K1xF (t) + v cos(θe(t)) cos(ψe(t))
y(t) = [uθ(t) uψ(t)]⊤,

(6)

where K1 > 0, κ(τ) and ζ(τ) denote the curvature and

torsion of the desired path pc(τ) respectively, and y(t) is the

vector of the input signals of the system Ge. First we prove

that in the absence of Gp there exist stabilizing functions for

the system Ge leading to local exponential stability with a

prescribed domain of attraction. Towards that end, let c1 and

c2 be related as follows:

√
2cc2 + sin−1

( 2cc1
d1 +

√
2cc1

)

<
π

2
, (7)

where c > 0 is any positive constant, and let yc(t) =
[uθc

(t) uψc
(t)]⊤ with

uθc
(t) = −K2(θe(t) − δθ(t)) +

c2
c1
zF (t)v(t)

sin(θe(t)) − sin(δθ(t))

θe(t) − δθ(t)
+ δ̇θ(t)

uψc
(t) = −K3(ψe(t) − δψ(t)) − c3

c1
yF (t)v(t) (8)

cos(θe(t))
sin(ψe(t)) + sin(δψ(t))

ψe(t) − δψ(t)
+ δ̇ψ,

where K2 > 0,K3 > 0. It follows from [2] that the system

in (6) can be stabilized by the functions in (8). The next

lemma follows from the main result in [2].

Lemma 1: Let d1 = d2 = d, where d1, d2 are in intro-

duced in (4), and c = 2c1d. Then the closed-loop system in

(6), (8) is locally exponentially stable with the domain of

attraction

Ω =

{

x : Vc(x) ≤
d2

2c1

}

,

where

Vc(x(t)) = x⊤(t)Px(t) ,

P = diag

(

1

2c1

1

2c1

1

2c1

1

2c2

1

2c3

)

, (9)

and c3 > 0 is any positive constant.

Proof. It follows from (6) and (8) that

V̇c(x(t)) =
xF
c1

(−τ̇(1 − κ(τ)yF ) + v cos(θe) cos(ψe))

+
yF
c1

(−τ̇(κ(τ)xF − ζ(τ)zF + v cos(θe) sin(ψe)))

+
zF
c1

(−ζ(τ)τ̇ yF − v sin(θe)) +
θe − δθ
c2

(uθc
(t) − δ̇θ)

+
ψe − δψ
c3

(uψc
− δ̇ψ)

=
−xF τ̇ + v cos(θe)(xF cos(ψe) + yF sin(ψe))

c1

+
−zF v sin(θe)

c1
− K2

c2
(θe − δθ)

2 − K3

c3
(ψe − δψ)2 +

vzF (sin(θe) − sin(δθ))

c1

−yF v cos(θe)(sin(ψe) + sin(δψ))

c1

= −K1

c1
x2
F − K2

c2
(θe − δθ)

2 − K3

c3
(ψe − δψ)2

−vyF sin(δψ) cos(θe) + vzF sin(δθ)

c1
(10)

Using (4), we have

V̇c(t) = −K1

c1
x2
F − K2

c2
(θe − δθ)

2 − K3

c3
(ψe − δψ)2

− vz2
F

c1(|zF | + d1)
− v cos(θe)y

2
F

c1(|yF | + d2)
= −x⊤Qx , (11)
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where

Q = diag

(

K1

c1

v cos(θe)

c1(|yF | + d2)

v

c1(|zF | + d1)

K2

c2

K3

c3

)

.

(12)

We note that Q > Qc, where

Qc = diag
(K1

c1

vmin

c1(|yFmax
| + d2)

vmin

c1(|zFmax
| + d1)

K2

c2

K3

c3

)

(13)

Since Qc > 0 and

V̇c(t) ≤ −x⊤(t)Qcx(t) ∀ t ≥ 0 , (14)

then x(t) is exponentially stable over the compact set Ω,

which completes the proof.

�

IV. L1 ADAPTIVE CONTROL OF CASCADED SYSTEMS

A. UAV with Autopilot

The system Gp represents the closed-loop autopilot of the

UAV with the input u(t) = [u1(t) u2(t)]
⊤ and the output

y(t) = [uθ(t) uψ(t)]⊤. The subsystem Gp can be described

as

Gp :
uθ(s) = Gp1(s)(u1(s) + z1(s))
uψ(s) = Gp2(s)(u2(s) + z2(s)) ,

(15)

where Gp1(s) and Gp2(s) are unknown strictly proper trans-

fer functions, z1(s) and z2(s) represent the Laplace transfor-

mation of the signals z1(t) and z2(t), respectively. We note

that the autopilot is designed to ensure that y(t) tracks any

smooth u(t) in the absence of Ge. We further assume that

the time-varying disturbances are bounded functions of time

with uniformly bounded derivatives:

|zi(t)| ≤ Li0 , i = 1, 2 , (16)

|żi(t)| ≤ Li1 , i = 1, 2 . (17)

where Li0, Li1 are some conservative known bounds.

Remark 1: We notice that the bandwidth of the control

channel of the closed-loop UAV with the autopilot is very

limited, and the model (15) is valid only for low-frequency

approximation of Gp.

We note that only very limited knowledge of the autopilot is

assumed at this point. We do not assume knowledge of the

state dimension of the unknown transfer functions Gpi(s),
i = 1, 2. We only assume that these are strictly proper

transfer functions.

Next, we isolate the autopilot with the UAV to design an

adaptive controller for it to track any desired bounded con-

tinuous reference input. Upon that, we consider stabilization

of the cascaded system.

Notice that since yc(t) stabilizes the subsystem Ge, the

control objective for the subsystem Gp is reduced to de-

signing an adaptive output feedback controller u(t) such

that output y(t) tracks the reference input yc(t) following

a desired reference model, i.e.

uθ(s) ≈ M(s)uθc
(s) , (18)

uψ(s) ≈ M(s)uψc
(s) . (19)

In this paper, for simplicity we consider a first order system,

i.e. we set

M(s) =
m

s+m
, m > 0. (20)

Since the systems in (18) and (19) have the same structure,

we define the L1 adaptive control architecture only for the

system in (18). The same analysis and design can be applied

to the system in (19).

B. L1 adaptive controller

The elements of L1 adaptive controller for the system in

(15) are introduced below.

State Predictor: We consider the state predictor:

˙̂uθ(t) = −mûθ(t) +m (u1(t) + σ̂(t)) , ûθ(0) = 0 , (21)

where the adaptive estimate σ̂(t) is governed by the follow-

ing adaptation law.

Adaptive Law: The adaptation of σ̂(t) is defined as:

˙̂σ(t) = ΓcProj(σ̂(t),−(ûθ(t) − uθ(t))), σ̂(0) = 0, (22)

where Γc ∈ IR+ is the adaptation rate, while projection

is performed on a compact set which is large enough to

encompass the possible uncertainties. Quantitative analysis

on the choice of Γc and other design details can be found in

[1], [5].

Control Law: The control signal is generated by:

u1(s) = uθc
(s) − C(s)σ̂(s) , (23)

where C(s) is a strictly proper system with C(0) = 1, and

uθc
(t) is the output of the stabilization function in (8). In

this paper, we consider the simplest choice of a first order

low-pass filter:

C(s) =
ω

s+ ω
. (24)

The complete L1 adaptive controller consists of (21),

(22) and (23) subject to the following L1-gain stability

requirement [1], [5].

L1-gain stability requirement: C(s) and M(s) need to

ensure that

H(s) =
Gp1(s)M(s)

C(s)Gp1(s) + (1 − C(s))M(s)
(25)

is stable and

‖G(s)‖L1
L < 1 , (26)

where

G(s) = H(s)(1 − C(s)) , (27)

and L is the Lipschitz constant of z1(t) w.r.t. uθ(t).

Here, we note that we need to find suitable m and ω
to stabilize H(s) in (25). The condition in (26) is always

satisfied for the system Gp1, since z1(t) does not depend on

uθ(t), which renders L = 0. In general, this may not be true.
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C. Closed-loop Reference System

Consider the following closed-loop reference system:

uθref
(s) = M(s)(u1ref

(s) + σref (s)), (28)

σref (s) =
(Gp1(s) −M(s))u1ref

(s) +Gp1(s)z1(s)

M(s)
, (29)

u1ref
(s) = uθc

(s) − C(s)σref (s) . (30)

It follows from [1] that for any given M(s) and C(s), there

exist constants γ1 > 0, γ2 > 0 leading to the following result.

Lemma 2: Given the system in (15) and the L1 adaptive

controller defined via (21), (22) and (23) subject to (26), we

have:

‖uθ − uθref
‖L∞ ≤ γ1√

Γc
, (31)

‖u1 − u1ref
‖L∞ ≤ γ2√

Γc
. (32)

It follows from Lemma 2 that by increasing the adaptation

rate Γc, we can render the bounds between the input/output

signals of the closed-loop adaptive system and the reference

system arbitrarily small.

D. Desired Low-pass system

We now derive the bounds between the signals of the

closed-loop reference system and the desired system in (18).

Let

ydes(s) =

[

uθdes
(s)

uψdes
(s)

]

= M(s)yc(s) . (33)

Lemma 3: Given the systems in (28)-(30) and (33), we

have:

‖uθdes
− uθref

‖L∞ ≤ γ3 , (34)

where

γ3 = ‖H(s) −M(s)‖L1
‖uθc

‖L∞ + ‖G(s)‖L1
L10. (35)

Proof. It follows from (29)-(30) that

u1ref
(s) = uθc

(s) −

C(s)
(Gp1(s) −M(s))u1ref

(s) +Gp1(s)z1(s)

M(s)
,

and hence

u1ref
(s) =

M(s)uθc
(s) − C(s)Gp1(s)z1(s)

C(s)Gp1(s) + (1 − C(s))M(s)
. (36)

It follows from (28)-(29) that

uθref
(s) = Gp1(s)(u1ref

(s) + z1(s)) . (37)

Substituting (36) into (37), it follows from (25) that

uθref
(s) = Gp1(s)

(M(s)uθc
(s) − C(s)Gp1(s)z1(s)

C(s)Gp1(s) + (1 − C(s))M(s)

+ zF (s)
)

= Gp1(s)M(s)

(

uθc
(s) + (1 − C(s))z1(s)

C(s)Gp1(s) + (1 − C(s))M(s)

)

= H(s) (uθc
(s) + (1 − C(s))zF (s)) . (38)

Fig. 3. L1 adaptive controller for the cascaded systems

It follows from (33) and (38) that

uθref
(s) − uθdes

(s) = (H(s) −M(s))uθc
(s)

+H(s)(1 − C(s))z1(s) .

Since H(s) is strictly proper and stable, it follows from (27)

that G(s) is also strictly proper and stable and hence

‖uθref
− uθdes

‖L∞ ≤ ‖H(s) −M(s)‖L1
‖uθc

‖L∞ +

‖H(s)(1 − C(s))‖L1
‖z1‖L∞ . (39)

Therefore, the relationship in (34) follows from (35) and

(39), which proves the Lemma. �

Let

ỹ(t) , [ũθ(t) ũψ(t)]⊤ = y(t) − ydes(t) . (40)

Lemma 4: Given the L1 adaptive controller defined via

(21), (22) and (23) subject to (26), we have:

‖ũθ‖L∞ ≤ γ̄1 , (41)

where γ̄1 = γ1/
√

Γc + γ3.

The proof of Lemma 4 follows from Lemmas 2 and 3

directly. Similarly, if we implement L1 adaptive controller

for the system in (15), we have

‖ũψ‖L∞ ≤ γ̄2 , (42)

where γ̄2 > 0 is a constant similar to γ̄1.

It we further want to reduce the bounds of γ̄1 and γ̄2, we

need to choose ω and Γc large. It follows that

lim
Γc→∞

(

γ1/
√

Γc + lim
ω→∞

γ3

)

= 0 ,

and hence lim
ω→∞,Γc→∞

γ̄i = 0, i = 1, 2 .

E. Control of cascaded systems

The cascaded closed-loop system defined via (8) (21),

(22) and (23) is illustrated in Figure 3. Stabilization of the

cascaded system is proved next.

Theorem 1: Given the cascaded controller defined via (8)

(21), (22) and (23), the closed-loop system in (6) and (15)-

(15) can be stabilized by appropriate choice of m, ω, Γc.
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Proof. Let

V = Vc(x(t)) + (y(t) − yc(t))
⊤(y(t) − yc(t))/2 (43)

be the candidate Lyapunov function. Then

V̇ (t) =
xF
c1

(−τ̇(1 − κ(τ)yF ) + v cos(θe) cos(ψe))

+
yF
c1

(−τ̇(κ(τ)xF − ζ(τ)zF ) + v cos(θe) sin(ψe))

+
zF
c1

(−ζ(τ)τ̇ yF − v sin(θe)) +
θe − δθ
c2

(uθc
− δ̇θ)

+
ψe − δψ
c3

(uψc
− δ̇ψ) +

θe − δθ
c2

(uθ − uθc
) +

ψe − δψ
c3

(uψ − uψc
) + (y − yc)

⊤(ẏ − ẏc) . (44)

Using the same steps of Lemma 1, it follows that

V̇ (t) ≤ −x⊤Qcx+
θe − δθ
c2

(uθ − uθc
) +

ψe − δψ
c3

(uψ − uψc
) + (y − yc)

⊤(ẏ − ẏc) , (45)

where Qc is defined in (13). Letting

x1(t) = [xF (t) yF (t) zF (t)]⊤ ,

x2(t) = [θe(t) − δθ(t) ψe(t) − δψ(t)]⊤ ,

Qc1 = diag
(K1

c1

vmin

c1(|yFmax
| + d2)

vmin

c1(|zFmax
| + d1)

)

,

Qc2 = diag
(K2

c2

K3

c3

)

,

Qc3 = diag
( 1

c2

1

c3

)

, (46)

it follows from (45) that

V̇ (t) ≤ −x⊤1 Qc1x1 − x⊤2 Qc2x2 + x⊤2 Qc3(y − yc) +

(y − yc)
⊤(ẏ − ẏc) . (47)

From (33), we have that

ẏdes(t) = −mydes(t) +myc(t). (48)

From (40) and (48), it can be computed that

(y − yc)
⊤(ẏ − ẏc) = (y − yc)

⊤( ˙̃y − ẏc) + (y − yc)
⊤(ẏdes)

= (y − yc)
⊤( ˙̃y − ẏc) + (y − yc)

⊤(−mydes +myc)

= (y − yc)
⊤( ˙̃y − ẏc) −m(y − yc)

⊤(y − yc) +m(y − yc)
⊤ỹ .

It follows from (47) that

V̇ (t) ≤ −x⊤1 Qc1x1 − x⊤2 Qc2x2 + x⊤2 Qc3(y − yc) −
m(y − yc)

⊤(y − yc) + (y − yc)
⊤( ˙̃y − ẏc +mỹ) .

Let r(t) = ˙̃y(t) − ẏc(t) + mỹ(t). We note that both y(t)
and ydes(t) are low-pass filtered signals, and hence ˙̃y(t) is

bounded. Similarly, the control law in (8) implies that yc(t)
has a bounded derivative. Lemma 4 implies that mỹ(t) is

bounded for any m, and therefore r(t) is bounded, i.e. ∃ γ4,

such that

r⊤(t)r(t) ≤ γ4 , γ4 > 0. (49)

Letting χ = [x⊤1 x⊤2 (y − yc)
⊤ r⊤]⊤ , one can compute

V̇ (t) ≤ −χ⊤(t)Q̄χ(t) + γ5r
⊤(t)r(t) , (50)

where

Q̄ =









Qc1 0 0 0
0 Qc2 −Qc3/2 0
0 −Qc3/2 mI −I/2
0 0 −I/2 γ5I









(51)

with I being the identity matrix of appropriate dimension.

For any γ5 > 0, the choice of m

mI >
Q2
c3

4Qc2
+

1

4γ5

I (52)

will lead to Q̄ > 0 and hence (49) and (50) imply that V̇ (t) ≤
−χ⊤(t)Q̄χ(t) + γ4γ5 . Thus, as long as χ⊤(t)Q̄χ(t) >
γ4γ5 , we have V̇ (t) < 0. It implies that V (t) will keep

decreasing until χ⊤(t)Q̄χ(t) ≤ γ4γ5, and hence the closed-

loop cascaded system is ultimately bounded. �

Note that for any γ5, (52) can always be satisfied by

increasing m, which implies that the ultimate bound of x
can be rendered small with large m. Further, it follows from

Lemma 4 that the bound for γ4 can be reduced by increasing

ω and Γc. However, ω cannot be chosen arbitrarily large due

to the limited bandwidth of the control channel of Gp. For

more details on the possible choices of ω and m see [9].

V. FLIGHT TEST RESULTS

The complete path following control system, shown in

Fig. 3, was implemented on an experimental UAV Rascal

operated by NPS. The cascaded controller defined in (8) (21),

(22) and (23) with

M(s) =
1

10s+ 1
, C(s) =

1

10s+ 1
, Γ = 10

was flight tested in February 2007. The subsystem Gp repre-

sents Rascal with the Piccolo autopilot as described in [2].

Fig. 4 presents the implementation architecture.

Fig. 4. Flight Test System Architecture

Fig. 5 presents the phase portrait, i.e. the position

(xI(t), yI(t)) in the inertial frame I as introduced in (3). The

UAV flight trajectory is compared to the desired trajectory.

Fig. 6 shows the corresponding time trajectories along with

the commanded rate input for the autopilot. It can be seen
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that the maximum deviation from the desired trajectory is

about 40m, which corresponds to the point of the sharp turn.

Other than at this point, the tracking errors are very close

to zero. Flight test results without L1 adaptive controller are

plotted in Figs. 7 and 8 for comparison.

VI. CONCLUSION

A complete inner-outer loop path following architecture

is presented that relies on L1 adaptive output feedback to

augment an existing autopilot. This architecture enables a

UAV with an off-the-shelf autopilot to follow a predeter-

mined path that it was not otherwise designed to follow. The

paper provides analytically computable performance bounds.

Fig. 5. Desired and actual UAV trajectories from flight test with L1

adaptive controller

Fig. 6. Top: path following turn rate command and contributions from
outer loop and L1 adaptation; bottom: path following errors

Fig. 7. Actual and desired UAV trajectories without adaptation

Fig. 8. Top: path following turn rate command without adaptation; bottom:
path following errors
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