
Guaranteed Transient Performance with L1 Adaptive Controller for

Parametric Strict Feedback Systems

Chengyu Cao and Naira Hovakimyan

Abstract— This paper extends the L1 adaptive control archi-
tecture from [1], [2] to parametric strict feedback systems in
the presence of unknown time-varying parameters and bounded
disturbances, which are not required to have slow rate of
variation. We prove that the L1 adaptive control architecture
ensures guaranteed transient response for system’s both signals,
input and output, simultaneously. Simulations of a benchmark
example conclude the paper.

I. INTRODUCTION

Recent papers [1], [2] introduced a new paradigm for de-

sign of adaptive controllers that leads to guaranteed transient

performance for system’s both signals, input and output,

simultaneously. The novel L1 adaptive control architectures

adapt fast without generating high-frequencies in the control

signal. This paper extends the results from [1], [2] to a

class of strict parametric feedback systems. For simplicity

of presentation of the main idea, the results in this paper are

developed for second order systems. Extension to higher-

order systems is straightforward and is not pursued in this

paper.

The paper is organized as follows. Section II presents the

mathematical preliminaries. Section III states the problem

formulation. Section IV introduces the novel L1 adaptive

control architecture, and Section V analyzes its properties.

Simulations are presented in Section VI. Section VII con-

cludes the paper.

II. PRELIMINARIES

In this Section, we recall some basic definitions and facts

from linear systems theory, [3]–[5].

Definition 1: For a signal ξ(t), t ≥ 0, ξ ∈ R
n, its

truncated L∞ norm and L∞ norm are defined as

‖ξt‖L∞ = max
i=1,..,n

(

sup
0≤τ≤t

|ξi(τ)|
)

,

‖ξ‖L∞ = max
i=1,..,n

(

sup
τ≥0

|ξi(τ)|
)

,

where ξi is the ith component of ξ.

Definition 2: The L1 gain of a stable proper single–input

single–output system H(s) is defined to be ||H(s)||L1
=

∫∞

0
|h(t)|dt, where h(t) is the impulse response of H(s),

computed via the inverse Laplace transform h(t) =
1

2πi

∫ α+i∞

α−i∞
H(s)estds, t ≥ 0, in which the integration is

done along the vertical line x = α > 0 in the complex

plane.
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Proposition: A continuous time LTI system (proper) with

impulse response h(t) is stable if and only if
∫∞

0
|h(τ)|dτ <

∞. A proof can be found in [3] (page 81, Theorem 3.3.2).

Definition 3: For a stable proper m input n output system

H(s) its L1 gain is defined as

‖H(s)‖L1
= max

i=1,··· ,n





m
∑

j=1

‖Hij(s)‖L1



 , (1)

where Hij(s) is the ith row jth column element of H(s).
The next lemma extends the results of Example 5.2 ( [4],

page 199) to general multiple input multiple output systems.

Lemma 1: For a stable proper multi-input multi-output

(MIMO) system H(s) with input r(t) ∈ R
m and output

x(t) ∈ R
n, we have

‖xt‖L∞ ≤ ‖H(s)‖L1
‖rt‖L∞ , ∀ t > 0.

Corollary 1: For a stable proper MIMO system H(s), if

the input r(t) ∈ R
m is bounded, then the output x(t) ∈ R

n

is also bounded as ‖x‖L∞ ≤ ‖H(s)‖L1
‖r‖L∞ .

Lemma 2: For a cascaded system H(s) = H2(s)H1(s),
where H1(s) is a stable proper system with m inputs and

l outputs and H2(s) is a stable proper system with l inputs

and n outputs, we have ‖H(s)‖L1
≤ ‖H2(s)‖L1

‖H1(s)‖L1
.

Theorem 1: ( [4], Theorem 5.6)(L1 Small Gain Theo-

rem) The interconnected system w2(s) = ∆(s)(w1(s) −
M(s)w2(s)) with input w1(t) and output w2(t) is stable if

‖M(s)‖L1
‖∆(s)‖L1

< 1.

III. PROBLEM FORMULATION

Consider the following system:

ẋ1(t) = θ1(t)x1(t) + σ1(t) + x2(t) ,

ẋ2(t) = θ⊤2 (t)x(t) + σ2(t) + u(t) , (2)

where x(t) = [x1(t), x2(t)]
⊤ is the measurable state vector,

x(0) = x0, u(t) is the control signal, θ1(t), θ2(t), σ1(t)
and σ2(t) are bounded time-varying unknown parameters and

disturbances. Without loss of generality, we assume that

θi(t) ∈ Θi, σi(t) ∈ Σi , t ≥ 0 , i = 1, 2 , (3)

where Θ1, Θ2, Σ1 and Σ2 are known sets. We further assume

that θi(t) and σi(t), i = 1, 2 are continuously differentiable,

and their derivatives are uniformly bounded:

‖θ̇i(t)‖ ≤ bθi
< ∞, ∀ t ≥ 0 ,

‖σ̇i(t)‖ ≤ bσi
< ∞, ∀ t ≥ 0 , (4)

where the numbers bθi
, bσi

, i = 1, 2, can be arbitrarily large.

The control objective is to design an adaptive controller
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u(t) to ensure that x1(t) tracks a given bounded continuous

reference input r(t) with finite derivative.

IV. L1 ADAPTIVE CONTROLLER

The elements of L1 adaptive controller are introduced

next:

State Predictor: We consider the following state predic-

tor:

˙̂x1(t) = −a1x̃1(t) + θ̂1(t)x1(t) + σ̂1(t) + x2(t) ,
˙̂x2(t) = −a2x̃2(t) + θ̂2(t)

⊤x(t) + σ̂2(t) + u(t) , (5)

x̂(0) = x0 ,

where a1 > 0 and a2 > 0 are positive gains,

x̃(t) =

[

x̃1(t)
x̃2(t)

]

=

[

x̂1(t) − x1(t)
x̂2(t) − x2(t)

]

(6)

is the vector of the prediction errors, while θ̂1(t), θ̂2(t), σ̂1(t)
and σ̂2(t) are the adaptive estimates.

Adaptive Laws: Adaptive estimates are governed by the

following adaptive laws:

˙̂
θ1(t) = ΓProj(θ̂1(t),−x1(t)x̃

⊤(t)P [1 0]⊤), θ̂1(0) = θ̂10

˙̂
θ2(t) = ΓProj(θ̂2(t),−x(t)x̃⊤(t)P [0 1]⊤), θ̂2(0) = θ̂20

˙̂σ1(t) = ΓProj(σ̂1(t),−x̃⊤(t)P [1 0]⊤), σ̂1(0) = σ̂10

˙̂σ2(t) = ΓProj(σ̂2(t),−x̃⊤(t)P [0 1]⊤), σ̂2(0) = σ̂20
(7)

where Γ ∈ R
+ is the adaptation gain, and P = P⊤ > 0 is

the solution of the algebraic equation A⊤
mP + PAm = −Q

for Hurwitz Am =

[

−a1 0
0 −a2

]

and Q > 0.

Control Law: Let

α1(s) = −a1(x1(s) − r(s)) − C1(s)r1(s) + sr(s) , (8)

where r(s) and r1(s) are the Laplace transformations of r(t)
and r1(t) = θ̂1(t)x1(t)+ σ̂1(t), and let the control signal be

defined via:

u(s) = −a2(x2(s) − α1(s)) + sα1(s) − C2(s)r2(s) , (9)

in which r2(s) is the Laplace transformation of

r2(t) = θ̂⊤2 (t)x(t) + σ̂2(t) (10)

with C1(s) and C2(s) being stable and strictly proper sys-

tems subject to C1(0) = C2(0) = 1. The relative degree of

C1(s) is chosen to be ≥ 2 to ensure that u(t) is a low-pass

signal.

Further, let

L1 = max
θ1(t)∈Θ1

|θ1(t)| ,

L2i
= max

θ2i
(t)∈Θ2i

|θ2i
(t)| , i = 1, 2 , (11)

where θ2i
(t) is the ith element of θ2(t), Θ1 and Θ2 are the

compact sets defined in (3). Define

L = max {L1, L21
+ L22

(1 + a1 + L1‖C1(s)‖L1
)} , (12)

Ag =

[

−a1 1
0 −a2

]

, (13)

Hg(s) = (sI − Ag)
−1 , (14)

G(s) = Hg(s)

[

1 − C1(s) 0
0 1 − C2(s)

]

. (15)

We now state the L1-gain performance requirement that

ensures stability of the entire system and desired transient

performance.

L1-gain stability requirement: Design C1(s) and C2(s)
to ensure that

‖G(s)‖L1
L < 1 , (16)

where G(s) is defined in (15).

V. ANALYSIS OF L1 ADAPTIVE CONTROLLER

A. Closed-loop reference system

Consider the following closed-loop reference system:

ẋr1
(t) = θ1(t)xr1

(t) + σ1(t) + xr2
(t) , (17)

ẋr2
(t) = θ⊤2 (t)xr(t) + σ2(t) + ur(t) , (18)

ur(s) = −a2(xr2
(s) − αr1

(s))

+sαr1
(s) − C2(s)rr2

(s) , (19)

αr1
(s) = −a1(xr1

(s) − r(s))

−C1(s)rr1
(s) + sr(s), (20)

where rr1
(s) and rr2

(s) are the Laplace transformation of

signals

rr1
(t) = θ1(t)xr1

(t) + σ1(t) ,

rr2
(t) = θ⊤2 (t)xr(t) + σ2(t) . (21)

Lemma 3: If (16) holds, then the closed-loop reference

system in (17)-(20) is stable.

Proof: Let

zr1
(t) = xr1

(t) − r(t) ,

zr2
(t) = xr2

(t) − αr1
(t). (22)

It follows from (17)-(18) that

żr1
(t) = −a1zr1

(t) + zr2
(t) + r3(t) ,

żr2
(t) = −a2zr2

(t) + r4(t) , (23)

where r3(t) and r4(t) are signals with their Laplace trans-

formations being:

r3(s) = (1 − C1(s))rr1
(s) , r4(s) = (1 − C2(s))rr2

(s) .
(24)

Let

zr(s) = [zr1
(s) zr2

(s)]⊤ .

It follows from (15), (21) and (23) that

zr(s) = G(s)

[

rr1
(s)

rr2
(s)

]

. (25)

From (21) and (22) we have

rr1
(t) = θ1(t)(zr1

(t) + r(t)) + σ1(t) ,

rr2
(t) = θ21

(t)(zr1
(t) + r(t)) + σ2(t)

+θ22
(t)(zr2

(t) + αr1
(t)) . (26)
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It follows from (20) that

αr1
(s) = −a1zr1

(s) − C1(s)rr1
(s) + sr(s) . (27)

Thus
[

rr1
(t)

rr2
(t)

]

=

[

θ1(t) 0
θ21

(t) − a1θ22
(t) θ22

(t)

] [

zr1
(t)

zr2
(t)

]

+

[

0
−θ22

(t)r5(t)

]

+

[

r6(t)
r7(t)

]

, (28)

where

r5(s) = C1(s)r10(s) , r10(s) = θ1(t)zr1
(t) ,

r6(t) = θ1(t)r(t) + σ1(t) ,

r7(t) = θ21
(t)r(t) + σ2(t) + θ22

(t)ṙ(t) − θ22
(t)r8(t) ,

r8(s) = C1(s)r9(s) , r9(t) = θ1(t)r(t) + σ1(t) . (29)

Since r(t), ṙ(t), σ(t) and θ(t) are bounded, it can be verified

straightforwardly that r6(t) and r7(t) are bounded. It follows

from Lemma 1 and (12) that
∥

∥

∥

∥

rr1

rr2

∥

∥

∥

∥

L∞

≤ L‖zr‖L∞ +

∥

∥

∥

∥

r6

r7

∥

∥

∥

∥

L∞

. (30)

Theorem 1 ensures that the cascaded system in (25) is

bounded, which completes the proof. �

B. Bounded Error Signal

Lemma 4: For the system in (2) and L1 adaptive con-

troller in (5), (7) and (9), the tracking error between the

system state and the state predictor is bounded as follows:

‖x̃‖L∞ ≤ γ0 , (31)

where

γ0 =

√

θm

λmin(P )Γ
, (32)

θm , 4(max
θ∈Θ1

θ2 + max
θ∈Θ2

θ⊤θ + max
σ∈Σ1

σ2 + max
σ∈Σ2

σ2) +

4
λmax(P )

λmin(Q)

(

2
∑

i=1

(

max
θ∈Θi

‖θ‖bθi
+ max

σ∈Σi

‖σ‖bσi

)

)

.

Proof. It follows from (2) and (5) that the error dynamics

between the system and the predictor are

˙̃x(t) = Amx̃(t) +

[

θ̃1(t)x1(t) + σ̃1(t)

θ̃⊤2 (t)x(t) + σ̃2(t)

]

. (33)

Consider the following candidate Lyapunov function

V (t) = x̃⊤(t)P x̃(t)+
1

Γ
(θ̃2

1(t)+θ̃⊤2 (t)θ̃2(t)+σ̃2
1(t)+σ̃2

2(t)) ,

(34)

where

θ̃i = θ̂i(t) − θi(t) , σ̃i(t) = σ̂i(t) − σi(t) , i = 1, 2. (35)

The adaptive law in (7) ensures the following inequality:

V̇ (t) ≤ −x̃⊤(t)Qx̃(t) − 2Γ−1
(

θ̃1(t)θ̇1(t)

+θ̃⊤2 (t)θ̇2(t) + σ̃1(t)σ̇1(t) + σ̃2(t)σ̇2(t)
)

(36)

The projection algorithm ensures that θ̂i(t) ∈ Θi, σ̂i(t) ∈
Σi, i = 1, 2 for all t ≥ 0, and therefore

max
t≥0

Γ−1(θ̃2
1(t) + θ̃⊤2 (t)θ̃2(t) + σ̃2

1(t) + σ̃2
2(t)) ≤

4

(

max
θ∈Θ1

θ2 + max
θ∈Θ2

θ⊤θ + max
σ∈Σ1

σ2 + max
σ∈Σ2

σ2

)

/Γ (37)

for any t ≥ 0. If at any t

V (t) >
θm

Γ
, (38)

where θm is defined in (32), then it follows from (37) that

x̃⊤(t)P x̃(t) > 2
λmax(P )

Γλmin(Q)
(

2
∑

i=1

(

max
θ∈Θi

‖θ‖bθi
+ max

σ∈Σi

‖σ‖bσi

)

)

, (39)

and hence

x̃⊤(t)Qx̃(t) ≥
λmin(Q)

λmax(P )
x̃⊤(t)P x̃(t)

> 4

∑2
i=1

(

max
θ∈Θi

‖θ‖bθi
+ max

σ∈Σi

‖σ‖bσi

)

Γ
.

The upper bounds in (4) along with the projection based

adaptive laws lead to the following upper bound:

−2
θ̃1(t)θ̇1(t) + θ̃⊤2 (t)θ̇2(t) + σ̃1(t)σ̇1(t) + σ̃2(t)σ̇2(t)

Γ

≤ 4

∑2
i=1

(

max
θ∈Θi

‖θ‖bθi
+ max

σ∈Σi

‖σ‖bσi

)

Γ
. (40)

Hence, if V (t) >
θm

Γ
, then from (36) we have

V̇ (t) < 0 . (41)

Since we have set x̂(0) = x(0), we can verify that

V (0) ≤
(

max
θ∈Θ1

θ2 + max
θ∈Θ2

θ2 + max
σ∈Σ1

σ2 + max
σ∈Σ2

σ2
)

/Γ

<
θm

Γ
.

It follows from (41) that V (t) ≤
θm

Γ
for any t ≥ 0. Since

λmin(P )‖x̃(t)‖2 ≤ x̃⊤(t)P x̃(t) ≤ V (t), then

||x̃(t)||2 ≤
θm

λmin(P )Γ
,

which concludes the proof. �

C. Transient and Steady State Performance

Let

z(t) =

[

z1(t)
z2(t)

]

=

[

x1(t) − r(t)
x2(t) − α1(t)

]

, (42)

and

e(t) =

[

e1(t)
e2(t)

]

= z(t) − zr(t) . (43)
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Theorem 2: Given the system in (2) and L1 adaptive

controller defined via (5), (7) and (9) subject to (16), we

have:

‖e‖L∞ ≤ γ1 , (44)

‖x − xr‖L∞ ≤ γ2 , (45)

‖u − ur‖L∞ ≤ γ3 , (46)

where

γ1 =
‖C(s)‖L1

1 − ‖G(s)‖L1
L

γ0 , (47)

γ2 = γ1 + a1γ1 + ‖C1(s)‖L1
L1γ1

+‖(s + a1)C1(s)‖L1
γ0 , (48)

γ3 = a2γ1 + ‖(s + a2)C2(s)‖L1
γ0

+‖C2(s)‖L1
(L21

+ L22
)γ2 + a1γ4

+‖s(s + a1)C1(s)‖L1
γ0 + ‖sC1(s)‖L1

L1γ1 , (49)

while γ0 is defined in (32), γ4 = (a1 + 1 + L1‖1 −
C1(s)‖L1

)γ1 + ‖(s + a1)C1(s)‖L1
γ0, and

C(s) =

[

C1(s) 0
0 C2(s)

]

. (50)

Proof. Let

r̄1(t) = θ1(t)x1(t) + σ1(t) ,

r̄2(t) = θ⊤2 (t)x(t) + σ2(t) ,

r̃1(t) = θ̃1(t)x1(t) + σ̃1(t) ,

r̃2(t) = θ̃⊤2 (t)x(t) + σ̃2(t) . (51)

It follows from (2), (8) and (9) that

ż(t) =

[

ż1(t)
ż2(t)

]

=

[

−a1z1(t) + z2(t) + r̄3(t) − r̃3(t)
−a2z2(t) + r̄4(t) − r̃4(t)

]

,

(52)

where r̄3(t), r̄4(t), r̃3(t), r̃4(t) are signals with their Laplace

transformations:

r̄3(s) = (1 − C1(s))r̄1(s)

r̄4(s) = (1 − C2(s))r̄2(s)

r̃3(s) = C1(s)r̃1(s)

r̃4(s) = C2(s)r̃2(s) .

Let

er1
(t) = θ1(t)(x1(t) − xr1

(t))

er2
(t) = θ⊤2 (t)(x(t) − xr(t)) . (53)

It follows from (23) and (52) that

ė(t) =

[

ė1(t)
ė2(t)

]

=

[

−a1e1(t) + e2(t) + er3
(t) − r̃3(t)

−a2e2(t) + er4
(t) − r̃4(t)

]

,

(54)

where er3
(t) and er4

(t) are signals with their Laplace

transformations:

er3
(s) = (1 − C1(s))er1

(s)

er4
(s) = (1 − C2(s))er2

(s) . (55)

From (15) and (54) we have

e(s) = G(s)

[

er1
(s)

er2
(s)

]

− (sI − Am)−1C(s)

[

r̃1(s)
r̃2(s)

]

. (56)

It follows from (22), (42), (43) and (53) that

er1
(t) = θ1(t)e1(t) ,

er2
(t) = θ21

(t)e1(t) + θ22
(t)(e2(t) + eα(t)) , (57)

where

eα(s) = −a1e1(s) − C1(s)er1
(s) , (58)

which eventually leads to
[

er1
(t)

er2
(t)

]

=

[

θ1(t) 0
θ21

(t) − a1θ22
(t) θ22

(t)

] [

e1(t)
e2(t)

]

+

[

0
−θ22

(t)er5
(t)

]

(59)

with

er5
(s) = C1(s)er1

(s) . (60)

Since ‖er1
‖L∞ ≤ L1‖e1‖L∞ , it follows from Lemma 1 that

(30), we have
∥

∥

∥

∥

er1

er2

∥

∥

∥

∥

L∞

≤ L‖e‖L∞ . (61)

It follows from (33) that

x̃(s) = (sI − Am)−1

[

r̃1(t)
r̃2(t)

]

, (62)

and hence

(sI − Am)−1C(s)

[

r̃1(t)
r̃2(t)

]

= C(s)x̃(s) . (63)

It follows from (56), (61) and (63) that

‖e‖L∞ ≤ ‖G(s)‖L1
L‖e‖L∞ + ‖C(s)‖L1

‖x̃‖L∞ ,

which leads to

‖e‖L∞ ≤
‖C(s)‖L1

1 − ‖G(s)‖L1
L
‖x̃‖L∞ . (64)

The bound in (44) follows from Lemma 4 and (64) directly.

To prove the bound in (46), we notice that from (8) and

(20) one can derive

α1(s) − αr1
(s) = −a1e1(s) − C1(s)er1

(s) − C1(s)r̃1(s) ,
(65)

where er1
(t) is defined in (53). Since C1(s)r̃1(s) = (s +

a1)C1(s)x̃1(s) and ‖x̃1‖L∞ ≤ ‖e1‖L∞ , we have

‖α1 − αr1
‖L∞ ≤ a1γ1 + ‖C1(s)‖L1

L1γ1 +

‖(s + a1)C1(s)‖L1
γ0 . (66)

Since ‖x − xr‖L∞ ≤ max{‖e1‖L∞ , ‖e2‖L∞ + ‖α1 −
αr1

‖L∞} it follows from (48) and (66) that (45) is proved.

It follows from (9) and (19) that

u(s) − ur(s) = −a2e2(s) + s(α1(s) − αr1
(s))

−C2(s)r̃2(s) − C2(s)er2
(s) ,

which along with (65) leads to

u(s) − ur(s) = −a2e2(s) − C2(s)r̃2(s) − C2(s)er2
(s)

+s(−a1e1(s) − C1(s)er1
(s) − C1(s)r̃1(s)) . (67)
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Letting ed(t) = ė1(t), we have

ed(s) = se1(s) , (68)

and hence (67) can be rewritten as

u(s) − ur(s) = −a2e2(s) − C2(s)r̃2(s) − C2(s)er2
(s)

−a1ed(s) − sC1(s)(er1
(s) + r̃1(s)) . (69)

Since

ed(t) = ė1(t) = −a1e1(t) + e2(t) + er3
(t) − r̃3(t) , (70)

and

‖ei‖L∞ ≤ ‖e‖L∞ ≤ γ1 , (71)

we have

‖ed‖L∞ ≤ (a1 + 1)γ1 + ‖er3
‖L∞ + ‖r̃3‖L∞ . (72)

We further notice that (44) and (45) imply that

‖er1
‖L∞ ≤ L1γ1 ,

‖er2
‖L∞ ≤ (L21

+ L22
)γ2 . (73)

Combining (44), (55) and (73), we have

‖er3
‖L∞ ≤ L1‖1 − C1(s)‖L1

γ1 . (74)

Since

r̃3(s) = C1(s)r̃1(s) = (s + a1)C1(s)x̃1(s) ,

we have

‖r̃3‖L∞ ≤ ‖(s + a1)C1(s)‖L1
γ0 . (75)

It follows from (72), (75) and (74) that

‖ed‖L∞ ≤ (a1 + 1 + L1‖1 − C1(s)‖L1
)γ1

+‖(s + a1)C1(s)‖L1
γ0 . (76)

Since

sC1(s)r̃1(s) = s(s + a1)C1(s)x̃1(s) ,

C2(s)r̃2(s) = (s + a2)C2(s)x̃2(s) , (77)

it follows from (49), (69), and (73) that

‖u − ur‖L∞ ≤ a2γ1 + ‖(s + a2)C2(s)‖L1
γ0

+‖C2(s)‖L1
(L21

+ L22
)γ2 + a1‖ed‖L∞

+‖s(s + a1)C1(s)‖L1
γ0 + ‖sC1(s)‖L1

L1γ1 ,

which combining (76) proves (46). �

The following Corollary 2 follows from Theorem 2 di-

rectly.

Corollary 2: Given the system in (2) and the L1 adaptive

controller defined via (5), (7) and (9) subject to (16), we

have:

lim
Γ→∞

(x(t) − xr(t)) = 0 , ∀ t ≥ 0, (78)

lim
Γ→∞

(u(t) − ur(t)) = 0 , ∀ t ≥ 0 . (79)

Thus, the tracking error between x(t) and xr(t), as well

between u(t) and ur(t), is uniformly bounded by a constant

inverse proportional to Γ. This implies that during the tran-

sient one can achieve arbitrarily close tracking performance

for both signals simultaneously by increasing Γ.

We note that the control law ur(t) in the closed-loop

reference system, which is used in the analysis of L∞ norm

bounds, is not implementable since its definition involves the

unknown parameters. Theorem 2 ensures that the L1 adaptive

controller approximates ur(t) both in transient and steady

state. So, it is important to understand how these bounds

can be used for ensuring uniform transient response with

desired specifications. If C1(s) = C2(s) = 1, the control

law in (19)-(20) becomes

uid(s) = −a2(xid2
(s) − αid1

(s))

+sαid1
(s) − rid2

(s) ,

αid1
(s) = −a1(xid1

(s) − r(s))

−rid1
(s) + sr(s), (80)

where rid1
(t) = θ1(t)xid1

(t)+σ1(t), rr2
(t) = θ⊤2 (t)xid(t)+

σ2(t), which is the ideal non-adaptive backstepping con-

troller for the system in (17)-(18). Let

zid1
(t) = xid1

(t) − r(t)

zid2
(t) = xid2

(t) − αid1
(t).

It follows from (80) that

żid1
(t) = −a1zid1

(t) + zid2
(t)

żid2
(t) = −a2zid2

(t) , (81)

which can be rewritten as:

żid(t) = Amzid(t) ,

where zid(t) = [zid1
(t) zid2

(t)]⊤. Since Am is Hurwitz,

zid(t) converges exponentially to the origin, and hence

lim
t→∞

(xid1
(t) − r(t)) = 0 . (82)

In the closed-loop reference system (17)-(20), uid(t) is

further low-pass filtered by C1(s) and C2(s) in (19)-(20)

to have guaranteed low-frequency range. Thus, the reference

system in (17)-(18) has a different response as compared

to (81) with (80). In [2], for unknown constant parameters

θ specific design guidelines are suggested for selection of

C(s) to achieve the desired response. In case of fast varying

θ(t), it is obvious that the bandwidth of the controller needs

to be matched correspondingly.

VI. SIMULATIONS

As an illustrative example, consider the system in (2),

where the time-varying unknown parameters are:

θ1(t) = 0.5 sin(0.3t) ,

θ2(t) = [0.5 sin(0.3t) 0.2 sin(0.3t) + 0.1 cos(0.2t)]⊤ ,

σ1(t) = sin(0.3t) ,

σ2(t) = cos(0.3t) .

For bounded θ1(t) and θ2(t), we assume the knowledge of

the following conservative bounds:

L1 = 1, L21
= 1 , L22

= 0.5 . (83)
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The control objective is to ensure that x1(t) tracks

r(t) = cos(0.3t)

with guaranteed transient performance.

We implement L1 adaptive controller via (5), (7) and (9)

with

C1(s) =
400

s2 + 28.28s + 400
, C2(s) =

20

s + 20
.

a1 = a2 = 1 , Q = I2×2 , Γ = 20000 .

It can be verified numerically that

‖C1(s)‖L1
= 1.087 , ‖G(s)‖L1

= 0.242 ,

and it follows from (83) that

‖G(s)‖L1
L = 0.242 × 3.54 = 0.857 < 1 .

Hence, the L1 stability requirement in (16) holds.

The simulation results are shown in Figures 1(a)-1(b).

Next, we consider the same controller for faster time-varying

0 10 20 30 40
−10

−5

0

5

10

15

Time t

(a) y(t) (solid) and r(t) (dashed)

0 10 20 30 40
−10

−5

0

5

10

time t

(b) Time-history of u(t)

Fig. 1. Performance for σ1(t) = sin(0.3t), σ2(t) = cos(0.3t).

disturbances

σ1(t) = sin(3t), σ2(t) = cos(3t) (84)

without any retuning. The system response and the control

signal are plotted in Figs. 2(a)-2(b). Finally, we consider

higher frequencies in the disturbance:

σ1(t) = sin(10t), σ2(t) = cos(10t) . (85)

The simulation results are shown in 3(a)-3(b). We note

that L1 adaptive controller guarantees smooth and uniform

transient performance in the presence of different unknown

nonlinearities and time-varying disturbances. The controller

frequencies are exactly matched with the frequencies of the

disturbance that it is supposed to cancel out. We also notice

that x1(t) and x̂1(t) are almost the same in Figs. 1(a), 2(a)

and 3(a).
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Fig. 2. Performance for σ1(t) = sin(3t), σ2(t) = cos(3t).
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Fig. 3. Performance for σ1(t) = sin(10t), σ2(t) = cos(10t).

VII. CONCLUSION

A novel L1 adaptive control architecture is presented

that has guaranteed transient response in addition to stable

tracking for parametric strict feedback systems with time-

varying unknown parameters and bounded disturbances. The

control signal and the system response approximate the same

signals of a closed-loop reference system, which can be

designed to achieve desired specifications.
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